Quasisymmetric graphs and Zygmund functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasisymmetric Graphs and Zygmund Functions

A quasisymmetric graph is a curve whose projection onto a line is a quasisymmetric map. We show that this class of curves is related to solutions of the reduced Beltrami equation and to a generalization of the Zygmund class Λ∗. This relation makes it possible to use the tools of harmonic analysis to construct nontrivial examples of quasisymmetric graphs and of quasiconformal maps.

متن کامل

Eulerian Quasisymmetric Functions

We introduce a family of quasisymmetric functions called Eulerian quasisymmetric functions, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index a...

متن کامل

Quasisymmetric functions and Heisenberg doubles

The ring of quasisymmetric functions is free over the ring of symmetric functions. This result was previously proved by M. Hazewinkel combinatorially through constructing a polynomial basis for quasisymmetric functions. The recent work by A. Savage and O. Yacobi on representation theory provides a new proof to this result. In this paper, we proved that under certain conditions, the positive par...

متن کامل

Quasisymmetric Schur functions

We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur fun...

متن کامل

Row-strict quasisymmetric Schur functions

Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal d'Analyse Mathématique

سال: 2012

ISSN: 0021-7670,1565-8538

DOI: 10.1007/s11854-012-0039-x